Vokabel	Bedeutung
rechtseindeutig	Wird bei einem Tupel der rechte Wert eindeutig zugewiesen, so handelt es sich um eine rechtseindeutige Relation und man spricht von einer Funktion .
	$f(x) = y_1 \land f(x) = y_2 \Longrightarrow y_1 = y_2$
injektiv (linkseindeutig)	Wird bei einem Tupel der linke Wert eindeutig zugewiesen, so handelt es sich um eine linkseindeutige bzw. injektive Funktion.
	$f(x_1) = y \land f(x_2) = y \Rightarrow x_1 = x_2$
surjektiv (rechtstotal)	ist eine Relation dann, wenn der Wertebereich der Funktion identisch mit der zweiten Menge des zugrundeliegenden kartesischen Produkts ist
	$\mathbb{W} = M_2$, $mit~M_1 imes M_2$
total (linkstotal)	ist eine Relation dann, wenn der Definitionsbereich der Funktion identisch mit
	der ersten Menge des zugrundeliegenden kartesischen Produkts ist
	$\mathbb{D} = \mathit{M}_1$, $mit~\mathit{M}_1 imes \mathit{M}_2$
bijektiv	ist eine Funktion injektiv , surjektiv und total , dann nennt man diese auch bijektiv und sie ist somit umkehrbar .
Umkehrfunktion	ist grafisch gesehen eine Spiegelung an der 1. Winkelhalbierenden.
	Nachdem – durch Anpassung der Welt – die Funktion bijektiv gemacht wurde,
	löst man diese nach x auf, macht den Variablentausch und wechselt noch den Definitionsbereich mit dem Wertebereich und umgekehrt.
Komposition	ist ein Ineinander-Schachteln von Funktionen, wobei die Variable der äußeren Funktion durch einen Ausdruck (innere Funktion) ersetzt wird.
Achsensymmetrie	ist eine Funktion dann, wenn sich alle Punkte an der y-Achse spiegeln lassen, d.h. es ändert sich nur das Vorzeichen der ersten Koordinate.
	f(x) = f(-x)
Punktsymmetrie	ist eine Funktion dann, wenn sich alle Punkte am Ursprung spiegeln lassen, d.h. es ändert sich nur das Vorzeichen beider Koordinaten.
	f(x) = -f(-x)
	Ist eine Funktion nicht zum Ursprung punktsymmetrisch, dann müssen beim Beweis die Koordinaten entsprechend verschoben werden.

Symmetrie:

=> nicht symmetrisch

$$\frac{\lambda}{x} = b_3 \qquad \forall \quad \frac{x}{y} = b_3 \quad | J_{(x,y)}$$

Deducts colonion

$$y = \frac{4}{x^{2}-8} - 4 \qquad /44$$

$$y + 4 = \frac{4}{x^{2}-8} \qquad /1$$

$$y' + 4 = \frac{4}{x^{2}-8} \qquad /1$$

$$y' + 4 = \frac{4}{x^{2}-8} \qquad /1$$

$$y' + 4 = \frac{4}{x^{2}-8} \qquad /1$$

$$x = \frac{4}{y^{2}+4} + 8 \qquad /1$$

$$x = \frac{4}{y^{2}+4} + 8 \qquad /1$$

$$x = \frac{4}{y^{2}+4} + 8 \qquad /1$$

$$y = \frac{4}{x^{2}-8} - 4 \qquad | + 4 |$$

$$y + 4 = \frac{4}{x^{2}-8} \qquad | + 4 |$$

$$y + 4 = \frac{4}{x^{2}-8} \qquad | + 4 |$$

$$y + 4 = \frac{4}{x^{2}-8} \qquad | + 4 |$$

$$y + 4 = \frac{4}{x^{2}-8} \qquad | + 4 |$$

$$y + 4 = \frac{4}{x^{2}-8} \qquad | + 4 |$$

$$y + 4 = \frac{4}{x^{2}-8} \qquad | + 4 |$$

$$y + 4 = \frac{4}{x^{2}-8} \qquad | + 4 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 | - 8 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 | - 8 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 | - 8 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 | - 8 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 | - 8 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 | - 8 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 | - 8 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 | - 8 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 | - 8 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 | - 8 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 | - 8 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 | - 8 |$$

$$y + 4 = \frac{4}{x^{2}-4} + 8 |$$

$$y + 4 = \frac{4}{x^{2}-4$$

$$y = \frac{u}{x^{2}-8} - 4$$

$$\frac{u}{x^{3}-8} - 4 = \frac{u}{x^{3}-8} - 4$$

$$\frac{u}{x^{3}-8} = \frac{u}{x^{2}-8}$$

$$y_{n} = x_{1}$$

$$y_{n} = x_{1}$$

$$y_{n} = x_{2}$$

$$f(x) = f(-x)$$

$$f(x) = \frac{4}{(-x)^2 - 8} - 4 = \frac{4}{x^2 - 8} - 4$$
Actionsymmetrie