MATHEMATIK

08.05.2017

WIEDERHOLUNG

Diese Fragen sollten Sie auch ohne Skript beantworten können:

- ✓ Was sind komplexe Zahlen?
- ✓ Was versteht man unter dem Betrag / Argument?
- ✓ Warum muss bei der Anwendung des ArcTan aufgepasst werden?
- ✓ Was hat die Modulo-Operation mit den komplexen Zahlen zu tun?
- ✓ Wie werden komplexe Zahlen multipliziert?
- ✓ Was ist das Pascal'sche Dreieck?
- ✓ Welche Darstellungsformen hat eine komplexe Zahl?
- ✓ Welche Darstellung ist optimal für das Potenzieren (warum)?

AUFGABEN

Berechnen Sie die folgenden Terme und geben Sie die Lösung als z=a+bi an.

2015:
$$z = \frac{5i \cdot (3+9i)}{(3i+1)^2} - \frac{(4i-3)^2}{(1-3i)}$$

$$z^2 - (6i-4) \cdot z = 12i+9$$

2014:
$$8 \cdot z = (2+i)^4 - (3-4i) \cdot (3+4i)$$

2013:
$$z^3 = 2z^2 \cdot (2-3i) + 3z \cdot (3+4i)$$
 $z = \frac{7}{20}i^3 \cdot [(3-2i^3)^4 - 1]$

KOMPLEXE ZAHLEN V

Die konjugiert komplexe Zahl:

Um den Imaginärteil einer komplexen Zahl zu beseitigen, wird mittels des 3. Binoms der Ausdruck erweitert (konjugiert komplexen Zahl).

$$z = a + bi \Rightarrow \overline{z} = a - bi$$

$$z \cdot \overline{z} = (a + bi) \cdot (a - bi) = a^2 - (bi)^2 = a^2 - b^2 i^2 = a^2 - (-b^2) = a^2 + b^2$$

Betrag:
$$z = 2 - 5i \Rightarrow \overline{z} = 2 + 5i$$

 $r = \sqrt{z \cdot \overline{z}} = \sqrt{(2 - 5i) \cdot (2 + 5i)} = \sqrt{2^2 + 5^2} = \sqrt{29}$

Division:
$$\frac{9-2i}{3+i} \cdot \frac{3-i}{3-i} = \frac{27-6i-9i+2i^2}{3^2-i^2} = \frac{25-15i}{10} = \frac{5}{2} - \frac{3}{2}i = 2,5-1,5i$$

KOMPLEXE ZAHLEN VI

Die Potenz einer komplexe Zahl:

Kartesische Form:
$$(a + bi)^n = (a + bi) \cdot (a + bi) \cdot \cdots \cdot (a + bi)$$

Berechnung via Binom oder Pascal'sche Dreieck

Trigonometrische Form:
$$\left[r \cdot \left(\cos(\alpha) + i \cdot \sin(\alpha)\right)\right]^n$$

Berechnung mittels der Formel von de Moivre

$$r^n \cdot (\cos(n \cdot \alpha) + i \cdot \sin(n \cdot \alpha))$$

Exponentielle Form:
$$[r \cdot e^{i \cdot \alpha}]^n$$

Berechnung mittels der Potenzgesetze

$$\Rightarrow r^n \cdot \left(e^{i \cdot \alpha}\right)^n = r^n \cdot e^{n \cdot (i \cdot \alpha)}$$

KOMPLEXE ZAHLEN VII

Beispiel:
$$z^3 = (3-4i)^3$$
, $r = \sqrt{3^2 + (-4i)^2} = 5$, $\alpha = arc \tan\left(-\frac{4}{3}\right) + 2\pi \approx 307^\circ$

Kartesische Form:
$$(3-4i)^3 = (3-4i)^2 \cdot (3-4i)$$

$$(-7-24i)\cdot(3-4i)$$

$$-21 + 28i - 72i + 96i^2 = -117 - 44i$$

Trigonometrische Form:
$$\left[5 \cdot \left(\cos(307^\circ) + i \cdot \sin(307^\circ)\right)\right]^3$$

$$5^3 \cdot \left(\cos(3\cdot 307^\circ) + i \cdot \sin(3\cdot 307^\circ)\right)$$

$$125 \cdot \left(\cos(201^\circ) + i \cdot \sin(201)\right)$$

Exponentielle Form:
$$\left[5 \cdot e^{i \cdot 307^{\circ}}\right]^{3}$$

$$5^3 \cdot (e^{i \cdot 307^\circ})^3 = 125 \cdot e^{3 \cdot (307^\circ \cdot i)} = 125 \cdot e^{921 \cdot i}$$

KOMPLEXE ZAHLEN VIII

Die Wurzel einer komplexe Zahl:

Während es beim Potenzieren einer komplexen Zahl nur eine Lösung gibt, entstehen beim Ziehen der n-ten Wurzel stets *n* Lösungen.

$$\sqrt[n]{z} = \sqrt[n]{r} \cdot \left[\cos\left(\frac{\alpha + 2k \cdot \pi}{n}\right) + i \cdot \sin\left(\frac{\alpha + 2k \cdot \pi}{n}\right) \right]$$

$$k = 0, 1, 2, \dots (n - 1)$$

Sobald k=n gilt wiederholen sich die Lösungen

$$z^4 = -1 \Rightarrow z = \sqrt[4]{-1} \text{ mit } r = 1 \text{ und } \alpha = \pi$$

$$k = 0$$
: $z_o = \sqrt[4]{1} \cdot \left[\cos\left(\frac{\pi}{4}\right) + i \cdot \sin\left(\frac{\pi}{4}\right) \right]$

$$k = 1$$
: $z_1 = \sqrt[4]{1} \cdot \left[\cos\left(\frac{\pi + 2\pi}{4}\right) + i \cdot \sin\left(\frac{\pi + 2\pi}{4}\right) \right]$

$$k = 2$$
: $z_2 = \sqrt[4]{1} \cdot \left[\cos\left(\frac{\pi + 4\pi}{4}\right) + i \cdot \sin\left(\frac{\pi + 4\pi}{4}\right) \right]$

$$k = 3$$
: $z_3 = \sqrt[4]{1} \cdot \left[\cos\left(\frac{\pi + 6\pi}{4}\right) + i \cdot \sin\left(\frac{\pi + 6\pi}{4}\right) \right]$

41

KOMPLEXE ZAHLEN IX

Die Wurzel einer komplexe Zahl:

Während es beim Potenzieren einer komplexen Zahl nur eine Lösung gibt, entstehen beim Ziehen der n-ten Wurzel stets n-1 Lösungen.

Polarform:

$$\sqrt[n]{z} = \sqrt[n]{r \cdot e^{i \cdot (\alpha + 2k \cdot \pi)}} = \sqrt[n]{r} \cdot e^{i \cdot \frac{\alpha + 2k \cdot \pi}{n}}$$

$$k = 0, 1, 2, ... (n - 1)$$

Sobald k = n gilt wiederholen sich die Lösungen

Beispiel:

$$z^4 = -1 \Rightarrow z = \sqrt[4]{-1}$$
 mit $r = 1$ und $\alpha = \pi$

$$k = 0: z_o = \sqrt[4]{1 \cdot e^{i \cdot \frac{\pi}{4}}}$$

$$k = 1$$
: $z_1 = \sqrt[4]{1} \cdot e^{i \cdot \frac{3\pi}{4}}$

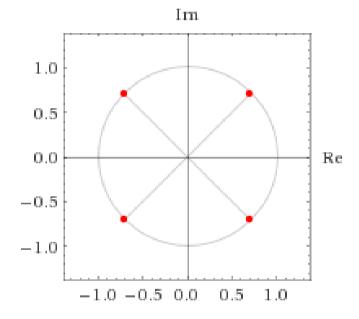
$$k = 2$$
: $z_2 = \sqrt[4]{1} \cdot e^{i \cdot \frac{5\pi}{4}}$

$$k = 3$$
: $z_3 = \sqrt[4]{1} \cdot e^{i \cdot \frac{7\pi}{4}}$

KOMPLEXE ZAHLEN X

Grafische Darstellung der Lösung zu $z^4 = -1$:

 Aufgrund des imaginären Raums, entspricht die Anzahl der Lösungen dem Grad der zu ziehenden Wurzel.



• Grafisch entsteht bei der Verbindung der Lösungspunkte ein Kreis, wobei der Radius identisch mit dem Betrag der komplexen ist.

AUFGABEN

Berechnen Sie die folgenden Terme und geben Sie die Lösung mittels exponentieller und trigonometrischer Form an.

Bestimmen Sie zusätzlich den Betrag und das Argument.

1.
$$(3-\sqrt{3})^4 \cdot (8+6i)^5$$

2.
$$z^5 = 32i$$

3. Bestimmen Sie die kartesische Form zu $z = 16 \cdot \left(cos(150^\circ) + i \cdot sin(150^\circ) \right)$ auf zwei Arten.

DEG	0°	30°	45°	60°	90°
RAD	0π	$\frac{1}{6}\pi$	$\frac{1}{4}\pi$	$\frac{1}{3}\pi$	$\frac{1}{2}\pi$
SIN	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
cos	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0
TAN	0	$\frac{1}{3}\sqrt{3}$	1	√3	-
1	l			<u> </u>	ı I

Welche neuen Begriffe habe ich kennen gelernt?

StudiumPlus - SS 2017 Torsten Schreiber 45